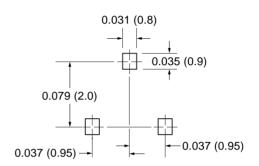

New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistors (NPN)

TO-236AB (SOT-23)



Dimensions in inches and (millimeters)

Features

- NPN Silicon Epitaxial Planar Transistors
- · Suited for low level, low noise, low frequency applications in hybrid cicuits.
- · Low Current, Low Voltage.
- As complementary types, BCW61 Series PNP transistors are recommended.

Mounting Pad Layout

Mechanical Data

Case: SOT-23 Plastic Package

Weight: approx. 0.008g

Marking BCW60A = AA

Code: BCW60B = ABBCW60C = AC

BCW60D = AD

Packaging Codes/Options:

E8/10K per 13" reel (8mm tape), 30K/box E9/3K per 7" reel (8mm tape), 30K/box

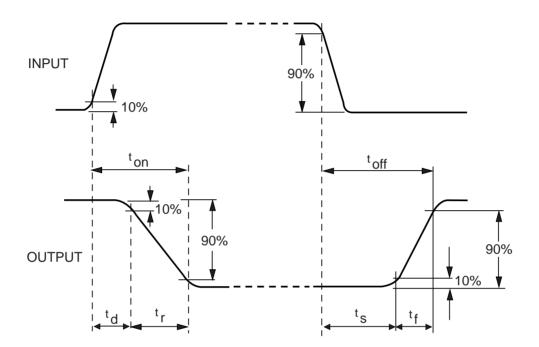
Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter	Symbol	Value	Unit	
Collector-Emitter Voltage (VBE=0)	Vces	32	V	
Collector-Emitter Voltage	VCEO	32	V	
Emitter-Base Voltage	V _{EBO}	5.0	V	
Collector Current (DC)	Ic	100	mA	
Peak Collector Current	Ісм	200	mA	
Base Current (DC)	lΒ	50	mA	
Power Dissipation	Ptot	250	mW	
Maximum Junction Temperature	Tj	150	°C	
Storage Temperature Range	Ts	-65 to +150	°C	
Thermal Resistance Junction to Ambient Air	R⊝JA	500 ⁽¹⁾	°C/W	

(1) Mounted on FR-4 printed-ciruit board.

BCW60 Series

Vishay Semiconductors formerly General Semiconductor


Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Symbol	Min.	TYP.	Max.	Unit
DC Current Gain						
at Vce = 5V, Ic = 10 μ A	BCW60A	hFE	_	_	_	_
at Vce = 5V, Ic = $10 \mu A$	BCW60B	hFE	20	_	_	_
at $V_{CE} = 5V$, $I_C = 10 \mu A$	BCW60C	hFE	40	_	_	_
at $V_{CE} = 5V$, $I_C = 10 \mu A$	BCW60D	hFE	100	-	_	_
at $V_{CE} = 5V$, $I_C = 2 \text{ mA}$	BCW60A	hFE	120	_	220	_
at $VCE = 5V$, $IC = 2 mA$	BCW60B	hFE	180	_	310	_
at $VCE = 5V$, $IC = 2 mA$	BCW60C	hFE	250	_	460	_
at $V_{CE} = 5V$, $I_C = 2 \text{ mA}$	BCW60D	hFE	380	_	630	_
at V _{CE} = 1V, I _C = 50 mA	BCW60A	hFE	50	_	_	_
at $VCE = 1V$, $IC = 50 \text{ mA}$	BCW60B	hfE	70	_	_	_
at $VCE = 1V$, $IC = 50 \text{ mA}$	BCW60C	hFE	90	_	_	_
at VCE = 1V, IC = 50 mA	BCW60D	hFE	100	_	-	_
Collector-Emitter Saturation Voltage						
at $I_C = 10 \text{ mA}$, $I_B = 0.25 \text{ mA}$		VCEsat	50	_	350	mV
at I _C = 50 mA, I _B = 1.25 mA		VCEsat	100	_	550	mV
Base-Emitter Saturation Voltage						
at $I_C = 10 \text{ mA}$, $I_B = 0.25 \text{ mA}$		V _{BEsat}	600	_	850	mV
at Ic = 50 mA, IB = 1.25 mA		VBEsat	700	_	1050	mV
Base-Emitter Voltage						
at VCE = 5V, IC = 2 mA		VBE	550	650	750	mV
at Vce = 5V, Ic = 10 μ A		VBE	_	520	_	mV
at $V_{CE} = 1V$, $I_C = 50$ mA		VBE	-	780	_	mV
Collector-Emitter Cut-off Current						
at $V_{CE} = 32V$, $V_{BE} = 0V$		ICES	_	_	20	nA
at VCE = 32V, VBE = 0V, TA = 150°C			1	1	20	μΑ
Emitter-Base Cut-off Current		l			20	Λ
at VEB = 4V, IC = 0		IEBO	_	_	20	nA
Gain-Bandwidth Product		<u>-</u>	400	250		N 41 1-
at V _{CE} = 5V, I _C = 10 mA, f = 100 MHz		fτ	100	250	_	MHz
Collector-Base Capacitance		Ссво	_	2.5	_	pF
at V _{CB} = 10V, f = 1 MH _Z , I _E =0		ООВО		2.0		P'
Emitter-Base Capacitance		Сево	_	8	_	pF
at V _{EB} = 0.5V, f = 1 MHz, I _C =0				-		F :
Noise Figure		_				
at VCE = 5V, IC = 200 μ A, Rs = 2 k Ω , f = 1k	Hz, B = 200Hz	F		2	6	dB
Small Signal Current Gain	BCW60A		_	200		
at $VCE = 5V$, $IC = 2 \text{ mA}$, $f = 1.0 \text{ kHz}$	BCW60B	h _{fe}	_	260		
	BCW60C	1116	_	330		
	BCW60D		_	520		
Turn-on Time at $R_L = 990\Omega$ (see fig. 1)		_		0.5	450	
VCC = 10V, $IC = 10mA$, $IB(on) = -IB(off) = 1r$	mA	t _{on}	_	85	150	ns
Turn-off Time at $R_L = 990\Omega$ (see fig. 1)				400	000	
VCC = 10V, Ic = 10mA, IB(on) = -IB(off) = 1r	mA	t _{off}	_	480	800	ns

Vishay Semiconductors formerly General Semiconductor

Fig. 1 - Switching Waveforms

