

TDA0161

PROXIMITY DETECTORS

- OUTPUT CURRENT : 10mA
- OSCILLATOR FREQUENCY : 10 MHz
- SUPPLY VOLTAGE : + 4 TO + 35 V

V[†]_{cc} ∐1(

2

3

4

Adjust [

Adjust [

Detector Hot Point

8 🗍 C*

7

5

Detector E

6 Output

Filtering

DESCRIPTION

These monolithic integrated circuits are designed for metallic body detection by detecting the variations in high frequency Eddy current losses. With an external tuned circuit they act as oscillators. Output signal level is altered by an approaching metallic object.

Output signal is determined by supply current changes. Independent of supply voltage, this current is high or low according to the presence or the absence of a close metallic object.

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	35	V
Tj	Junction Temperature	+150	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

ELECTRICAL CHARACTERISTICS

TDA0161DP $-40^{\circ}C < T_{amb} < +100^{\circ}C$

TDA0161FP $-40^{\circ}C < T_{amb} < +100^{\circ}C$

Ptot < 150mW, unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage		4		35	V
	Reverse Voltage Limitation ($I_{CC} = -100 \text{ mA}$)	TDA0161		1		V
Icc	Supply Current, Close Target (T _{amb} = +25°C) +4V < V _{CC} < +35V	TDA0161	8	10	12	mA
Icc	Supply Current, Remote Target +4V < V _{CC} < +35V	TDA0161			1	mA
	Supply Current Transition Time C3 = 0 $C3 \neq 0$			1 (100 x C3 (nF))		μs
fosc	Oscillator Tuning Frequency				10	MHz
fo	Output Frequency (C3 = 0)				10	kHz
Δlcc	Output Current Ripple - C3 = 0, C2 (pF) > 150/f _{osc} (MHz)				20	μΑ
R _n	Negative Resistance on Terminals A and E $4k\Omega < R1 < 50k\Omega$, f _{osc} < 3 MHz			R1	1.1 R1	
H _{yst}	Hysteresis at Detection Point C2 (Pf) > 150/f _{osc} (MHz)				5	%

* If the circuit is used at a frequency higher than 3MHz, it is recommended to connect a capacitor of 100pF between terminals E and D.

OPERATING MODE

Between terminals A and E, the integrated circuit acts like a negative resistance equal to the external resistor R1 connected between terminals B and H.

supply current will be $l_{CC} = 10$ mA (pins G and D). The oscillation sustains when loss resistance Rp of tuned circuit becomes higher than R1. Then, the supply current will be l_{CC} 1mA (pins G and D).

The oscillation stops when loss resistance Rp of tuned circuit becomes smaller than R1. Then, the

Eddy currents induced by coil L1 in a metallic body, determine loss resistance Rp.

SGS-THOMSON

TYPICAL APPLICATIONS

Detection Range (*)	L1 (μH)		C1 (pF)	f _{osc} (kHz)	R1 (kΩ)	C2 pF
2mm	30	(1)	120	2650	6.8	47
5mm	300	(2)	470	425	27	470
10mm	2160	(3)	4700	50	27	3300

(*) Ingot steel target

COIL CHARACTERISTICS

	Core	Coil Former	Wire**	Number of Turns
1	Cofelec 432 FP 9 x 5 SE	1/2 CAR 091 - 2	THOMSON Fils et Câbles Thomrex 14 (14/100mm)	40
2	Cofelec 432 FP 14 x 8 SE	1/2 CAR 142 - 2	THOMSON Fils et Câbles Thomrex 14 (14/100mm)	100
3	Cofelec 432 FP 26 x 16 SE	1/2 CAR 262 - 2	THOMSON Fils et Câbles Thomrex 14 (14/100mm)	200

** The above results are obtained with single wire coil. When using Litz wire instead of single wire, the parallel resistance of the coil becomes higher and the value of R1 may be increased, resulting in better sensitivity.

